A very fast iterative algorithm for TV-regularized image reconstruction with applications to low-dose and few-view CT

نویسندگان

  • Hiroyuki Kudo
  • Fukashi Yamazaki
  • Takuya Nemoto
  • Keita Takaki
چکیده

This paper concerns iterative reconstruction for low-dose and few-view CT by minimizing a data-fidelity term regularized with the Total Variation (TV) penalty. We propose a very fast iterative algorithm to solve this problem. The algorithm derivation is outlined as follows. First, the original minimization problem is reformulated into the saddle point (primal-dual) problem by using the Lagrangian duality, to which we apply the first-order primal-dual iterative methods. Second, we precondition the iteration formula using the ramp filter of Filtered Backprojection (FBP) reconstruction algorithm in such a way that the problem solution is not altered. The resulting algorithm resembles the structure of so-called iterative FBP algorithm, and it converges to the exact minimizer of cost function very fast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast System Matrix Calculation in CT Iterative Reconstruction

Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...

متن کامل

NUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT

Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography (CT). Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based iterative reconstruction t...

متن کامل

Fast Splitting-Based Ordered-Subsets X-Ray CT Image Reconstruction

Using non-smooth regularization in X-ray computed tomography (CT) image reconstruction has become more popular these days due to the recent resurgence of the classic augmented Lagrangian (AL) methods in fields such as totalvariation (TV) denoising and compressed sensing (CS). For example, undersampling projection views is one way to reduce radiation dose in CT scans; however, this causes strong...

متن کامل

Low-Dose Micro-CT Imaging for Vascular Segmentation and Analysis Using Sparse-View Acquisitions

The aim of this study is to investigate whether reliable and accurate 3D geometrical models of the murine aortic arch can be constructed from sparse-view data in vivo micro-CT acquisitions. This would considerably reduce acquisition time and X-ray dose. In vivo contrast-enhanced micro-CT datasets were reconstructed using a conventional filtered back projection algorithm (FDK), the image space r...

متن کامل

Comparing IDREAM as an Iterative Reconstruction Algorithm against In Filtered Back Projection in Computed Tomography

Introduction: Recent studies of Computed Tomography (CT) conducted on patient dose reduction have recommended using an iterative reconstruction algorithm and mA (mili-Ampere) dose modulation. The current study aimed to evaluate Iterative Dose Reduction Algorithm (IDREAM) as an iterative reconstruction algorithm. Material and Methods: Two CT p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1609.06041  شماره 

صفحات  -

تاریخ انتشار 2016